Battery Characterization in Today’s World
Batteries have powered life around us for years, from household products to life-saving medical devices, and even our favorite toys as children. Today there are more applications for batteries than ever before, influencing a surge in research to explore how they can be used to sustainably power our future.
How does a lithium-ion battery work?
A lithium-ion battery is comprised of four main components – cathode, anode, separator, and electrolyte. In a working battery, lithium ions flow from the anode to the cathode during discharge. The lithium-ions flow in the reverse direction during recharging. Each individual battery cell outputs only a limited amount of energy and is often combined with other cells to form battery packs. Battery packs can in turn be combined to form battery modules for energy storage applications that require higher amounts of energy output such as electric vehicles and grid storage. The materials comprising the cathode, anode, separator, and electrolyte together help define a battery’s six primary performance characteristics – run time, safety, cycle life, power, energy density, and costs.
Making a Battery: How to Choose the Right Materials
A key aspect of selecting the best materials for each part of the battery to optimize the six primary performance characteristics depends on advanced analytical characterization. One of the most critical parameters in material selection is thermal tolerance because the materials comprising a working battery must work within a temperature range of -20 °C to 60 °C. The analytical technique known as thermal analysis is ideal for testing thermal tolerances and stability of battery materials. With thermal analysis, it’s possible to obtain such thermal parameters as the decomposition temperature, chemical composition, degree of oxidation, solvent composition, melting temperature, glass transition, and thermal stability.


